亚洲视频一区二区_AV电影在线免费观看_国模精品视频一区二区_91免费福利视频一区二区_亚洲AV成人精品一区青青草原_国产免费无码视频_亚洲无码在线不卡_亚洲精品永久久久久久_久久超碰精品国产_国产特一级一级一级黄色视频免费的_波多野结衣网址_五月天丁香婷婷蜜桃色_国产精品亚洲一区二区在线观看_免费观看黃色A一级在线视频_国产精品亚洲午夜福利AV

首頁 全所PI名錄
  • 周小龍
  • 研究員,研究組長,博士生導師
  • E-mail: xlzhou@sibcb.ac.cn
  • 實驗室主頁: 
    個人簡介:
  •   2004年7月畢業于安徽師范大學生命科學學院,獲得理學學士學位;2009年5月畢業于中國科學院上海生命科學研究院,獲得理學博士學位。2009年6月至2017年10月,任中科院生化與細胞所助理研究員、副研究員;2009年11月至2010年1月,法國國家科研中心(CNRS)斯特拉斯堡分子與細胞生物學研究所訪問學者;2010年7月至2010年12月,美國耶魯大學分子生物物理與生物化學系訪問學者;2017年11月起任生化與細胞所研究員;2019年5月起,任生化與細胞所研究組長、博士生導師。榮獲2011年度中科院盧嘉錫青年人才獎、中科院青年創新促進會會員、2012年度賽諾菲-中科院上海生科院優秀青年人才獎、2015年度中科院青年創新促進會優秀會員、2016年度上海市青年科技啟明星、2018年度國家自然科學基金優秀青年基金等人才項目或稱號。

    社會任職:
    研究方向:
  • RNA代謝與線粒體疾病
    研究工作:
  •   RNA是遺傳信息傳遞中最為關鍵的生物大分子之一。RNA被轉錄后,需要經歷加工、修飾、成熟、降解等一系列代謝過程。這些RNA代謝過程對于正常生命活動具有重要的生物學意義。在已發現的170多種RNA表觀遺傳修飾中,絕大多數(>120種)發生在tRNA分子上。tRNA轉錄后表觀遺傳修飾種類最多,機制最為多樣與復雜。tRNA修飾由tRNA修飾酶介導,決定tRNA結構、穩定性、遺傳信息傳遞的速度與精確性、蛋白質穩態維持等。成熟的tRNA在細胞質或線粒體氨基酰-tRNA合成酶介導的氨基酰化與編校反應的催化下連接上正確的氨基酸,參與蛋白質合成。

      人細胞具有兩套遺傳物質:核基因組和線粒體基因組。線粒體是真核細胞關鍵細胞器,其蛋白質組由兩套遺傳物質共同編碼。線粒體基因組只編碼37個基因,產生氧化呼吸鏈復合物關鍵的13種跨膜蛋白質,對于氧化呼吸鏈復合物正確組裝與行使功能至關重要。線粒體相關的核基因(包括線粒體氨基酰-tRNA合成酶、tRNA修飾酶等)以及線粒體自身基因(包括線粒體tRNA)遺傳變異主要影響中樞/外周神經、心臟、肌肉、內分泌等系統,導致線粒體功能異常,造成人類疾病,統稱為線粒體疾病(例如腦白質病、認知障礙、心臟病、肌無力、腎衰、癲癇等)。

      研究組運用生物化學、分子生物學、細胞生物學、遺傳學等技術方法,主要研究:(1) tRNA、氨基酰-tRNA合成酶與tRNA修飾酶介導的人細胞質與線粒體蛋白質合成的分子機制;(2)闡明臨床發生的蛋白質合成缺陷相關線粒體疾病的致病機制;(3)探索線粒體疾病靶向診斷與干預策略。

    承擔科研項目情況:
    代表論著:
    1. Liu N#, Liu B#, Ma CR#, Cai Z, Wang JT, Chai ZQ, Zhu N, Shao T, Chen YL, Lin Y*, Wang Y*, Xu H*, Zhou XL*, Mammalian tRNA acetylation determines translation efficiency and tRNA quality control. Nat. Commun., 2025, 16(1):5496.
    2. Yao SY, Zhou XL*, Tangled but ordered human mitochondrial tRNA maturation. SCIENCE CHINA Life Sciences. 2025, doi: 10.1007/s11427-024-2782-1.
    3. Lu JL#, Dai Y#, Ji K#, Peng GX, Li H, Yan C*, Shen B*, Zhou XL*, Taurine hypomodification underlies mitochondrial tRNATrp-related genetic diseases. Nucleic Acids Res., 2024, 52(21):13351-13367.
    4. Mao XL, Eriani G, Zhou XL*, ADATs: Roles in tRNA editing and relevance to disease. Acta Biochim. Biophys. Sin., 2024, doi.org/10.3724/abbs.2024125.
    5. Li ZH, Zhou XL*, Eukaryotic AlaX provides multiple checkpoints for quality and quantity of aminoacyl-tRNAs in translation. Nucleic Acids Res., 2024, 52(13): 7825-7842.
    6. Ma CR, Liu N, Li H, Xu H, Zhou XL*, Activity reconstitution of Kre33 and Tan1 reveals a molecular ruler mechanism in eukaryotic tRNA acetylation. Nucleic Acids Res., 2024, 52(9): 5226-5240.
    7. Zhang JH, Eriani G*, Zhou XL*, Pathophysiology of human mitochondrial tRNA metabolism. Trends Endocrinol. Metab., 2024, 35(4): 285-289.
    8. Zhang Y#, Zhou JB#, Yin Y, Wang ED*, Zhou XL*, Multifaceted roles of t6A biogenesis in efficiency and fidelity of mitochondrial gene expression. Nucleic Acids Res., 2024, 52(6):3213-3233.
    9. Yuan C#, Li ZH#, Luo X, Huang P, Guo L, Lu M, Xia J, Xiao Y*, Zhou XL*, Chen M*, Mammalian trans-editing factor ProX is able to deacylate tRNAThr mischarged with alanine. Int. J. Biol. Macromol., 2023, 253, 127121.
    10. Zheng WQ, Zhang JH, Li ZH, Liu X, Zhang Y, Huang S, Li J, Zhou B, Eriani G, Wang ED*, Zhou XL*, Mammalian mitochondrial translation infidelity leads to oxidative stress-induced cell cycle arrest and cardiomyopathy. Proc. Natl. Acad. Sci. USA, 2023, 120(37), e2309714120.
    11. Huang MH, Wang JT, Zhang JH, Mao XL, Peng GX, Lin X, Lv D, Yuan C, Lin H, Wang ED*, Zhou XL*, Mitochondrial RNA m3C methyltransferase METTL8 relies on an isoform-specific N-terminal extension and modifies multiple heterogenous tRNAs. Science Bulletin, 2023, 68(18): 2094-2105.
    12. Guo M#, Qiao X#, Wang Y#, Li ZH#, Shi C, Chen Y, Kang L, Chen C*, Zhou XL*, Mitochondrial translational defect extends lifespan in C. elegans by activating UPRmt. Redox Biology, 2023, 63, 102722
    13. Lu JL, Zhou XL*, SARS-CoV-2 main protease Nsp5 cleaves and inactivates human tRNA methyltransferase TRMT1. J. Mol. Cell Biol., 2023, 15(4), mjad024.
    14. Zeng QY#, Zhang F#, Zhang JH#, Hei Z#, Li ZH, Huang MH, Fang P*, Wang ED*, Sun XJ*, Zhou XL*, Loss of threonyl-tRNA synthetase-like protein Tarsl2 has little impact on protein synthesis but affects mouse development. J. Biol. Chem., 2023, 299(5): 104704
    15. Peng GX#, Mao XL#, Cao YT, Yao SY, Li QR, Chen X, Wang ED*, Zhou XL*, RNA granule-clustered mitochondrial aminoacyl-tRNA synthetases form multiple complexes with the potential to fine-tune tRNA aminoacylation. Nucleic Acids Res., 2022, 50(22): 12951-12968.
    16. Yu T#, Zhang Y#, Zheng WQ, Wu S, Li G, Zhang Y, Li N, Yao R, Fang P, Wang J*, Zhou XL*, Selective degradation of tRNASer(AGY) is the primary driver for mitochondrial seryl-tRNA synthetase-related disease. Nucleic Acids Res., 2022, 50(20):11755-11774.
    17. Huang MH, Peng GX, Mao XL, Wang JT, Zhou JB, Zhang JH, Chen M, Wang ED*, Zhou XL*. Molecular basis for human mitochondrial tRNA m3C modification by alternatively spliced METTL8. Nucleic Acids Res., 2022, 50(7):4012-4028.
    18. Wu S, Zheng L, Hei Z, Zhou JB, Li G, Li P, Wang J, Ali H, Zhou XL, Wang J, Fang P. Human lysyl-tRNA synthetase evolves a dynamic structure that can be stabilized by forming complex. Cell. Mol. Life Sci., 2022, 79(2):128.
    19. Wang JT#, Zhou JB#, Mao XL, Zhou L, Chen M, Zhang W, Wang ED*, Zhou XL*. Commonality and diversity in tRNA substrate recognition in t6A biogenesis by eukaryotic KEOPSs. Nucleic Acids Res., 2022, 50(4):2223-2239.
    20. Zheng WQ, Pedersen SV, Thompson K, Bellacchio E, French CE, Munro B, Pearson TS, Vogt J, Diodato D, Diemer T, Ernst A, Horvath R, Chitre M, Ek J, Wibrand F, Grange DK, Raymond L, Zhou XL*, Taylor RW, Ostergaard E*. Elucidating the molecular mechanisms associated with TARS2-related mitochondrial disease, Hum Mol Genet., 2022, 31(4):523-534.
    21. Chen R, Zhou J, Liu L, Mao XL, Zhou XL, Xie W. Crystal structure of human METTL6, the m3C methyltransferase. Commun. Biol., 2021, 4(1):1361.
    22. Zhou JB, Wang ED*, Zhou XL*. Modifications of the human tRNA anticodon loop and their associations with genetic diseases. Cell. Mol. Life Sci., 2021, 78(23):7087-7105.
    23. Zhang F#, Zeng QY#, Xu H#, Xu A#, Liu DJ, Li NZ, Chen Y, Jin Y, Xu CH, Feng CZ, Zhang YL, Liu D, Liu N, Xie Y, Yu SH, Yuan H, Xue K, Shi JY, Liu T, Xu PF, Zhao WL, Zhou Y, Wang L, Huang QH, Chen Z, Chen SJ*, Zhou XL*, Sun XJ*. Selective and competitive functions of the AAR and UPR pathways in stress-induced angiogenesis. Cell Discovery, 2021, 7(1):98. ?
    24. Mao XL, Li ZH, Huang MH, Wang JT, Zhou JB, Li QR, Xu H, Wang XJ, Zhou XL*. Mutually exclusive substrate selection strategy by human m3C RNA transferases METTL2A and METTL6. Nucleic Acids Res., 2021, 49(14): 8309-8323.
    25. Peng GX, Zhang Y, Wang QQ, Li QR, Xu H, Wang ED*, Zhou XL*. The human tRNA taurine modification enzyme GTPBP3 is an active GTPase linked to mitochondrial diseases. Nucleic Acids Res., 2021, 49(5): 2816–2834.
    26. Li G, Eriani G, Wang ED*, Zhou XL*. Distinct pathogenic mechanisms of various RARS1 mutations in Pelizaeus-Merzbacher-like disease. Sci. China Life Sci., 2021, 64(10):1645-1660.
    27. Zheng WQ#, Zhang Y#, Yao Q#, Chen Y#, Qiao XH, Wang ED*, Chen C*, Zhou XL*. Nitrosative stress inhibits aminoacylation and editing activities of mitochondrial threonyl-tRNA synthetase by S-nitrosation. Nucleic Acids Res., 2020, 48(12):6799-6810.
    28. Zhou JB, Wang Y, Zeng QY, Meng SX, Wang ED*, Zhou XL*. Molecular basis for t6A modification in human mitochondria. Nucleic Acids Res., 2020, 48(6):3181-3194.
    29. Wang Y#, Zhou JB#, Zeng QY, Wu S, Xue MQ, Fang P, Wang ED*, Zhou XL*. Hearing impairment-associated KARS mutations lead to defects in aminoacylation of both cytoplasmic and mitochondrial tRNALys. Sci. China Life Sci., 2020, 63(8):1227-1239.
    30. Zhou XL#,*, Chen Y#, Zeng QY, Ruan ZR, Fang P, Wang ED*. Newly acquired N-terminal extension targets threonyl-tRNA synthetase-like protein into the multiple tRNA synthetase complex. Nucleic Acids Res., 2019, 47(16), 8662-8674.
    31. Zeng QY, Peng GX, Li G, Zhou JB, Zheng WQ, Xue MQ, Wang ED*, Zhou XL*. The G3-U70-independent tRNA recognition by human mitochondrial alanyl-tRNA synthetase. Nucleic Acids Res., 2019, 47(6), 3072-3085.
    32. Wang Y, Zeng QY, Zheng WQ, Ji QQ, Zhou XL*, Wang ED*. A natural non-Watson-Crick base pair in human mitochondrial tRNAThr causes structural and functional susceptibility to local mutations. Nucleic Acids Res., 2018, 46(9), 4662-4676.
    33. Chen Y, Ruan ZR, Wang Y, Huang Q, Xue MQ, Zhou XL*, Wang ED*. A threonyl-tRNA synthetase-like protein has tRNA aminoacylation and editing activities. Nucleic Acids Res., 2018, 46(7), 3643-3656.
    34. Hilander T#, Zhou XL#, Konovalova S, Zhang FP, Euro L, Chilov D, Poutanen M, Chihade J, Wang ED*, Tyynismaa H*. Editing activity for eliminating mischarged tRNAs is essential in mammalian mitochondria. Nucleic Acids Res., 2018, 46(2), 849-860.
    35. Zhou XL#, He LX#, Yu LJ#, Wang Y, Wang XJ*, Wang ED*, Yang T*. Mutations in KARS cause early-onset hearing loss and leukoencepha lopathy: Potential pathogenic mechanism. Human Mutation, 2017, 38(12):1740-1750.
    36. Zhou XL#, Chen Y#, Fang ZP, Ruan ZR, Wang Y, Liu RJ, Xue MQ, Wang ED*. Translational quality control by bacterial threonyl-tRNA synthetases. J. Biol. Chem., 2016, 291(40), 21208-21221.
    37. Wang Y#, Zhou XL#,*, Ruan ZR#, Liu RJ, Eriani G, Wang ED*. A human disease-causing point mutation in mitochondrial threonyl-tRNA synthetase induces both structural and functional defects. J. Biol. Chem., 2016, 291(12):6507-6520.
    38. Ji QQ, Fang ZP, Ye Q, Ruan ZR, Zhou XL*, Wang ED*. C-terminal domain of leucyl-tRNA synthetase from pathogenic Candida albicans recognizes both tRNASer and tRNALeu. J. Biol. Chem., 2016, 291(7):3613-3625.
    39. Ye Q, Wang M, Fang ZP, Ruan ZR, Ji QQ, Zhou XL*, Wang ED*. Degenerate CP1 domain from human mitochondrial leucyl-tRNA Synthetase. J. Biol. Chem., 2015, 290(40):24391-24402.
    40. Ruan ZR, Fang ZP, Ye Q, Lei HY, Eriani G, Zhou XL*, Wang ED*. Identification of lethal mutations in yeast threonyl-tRNA synthetase revealing critical residues in its human homolog. J. Biol. Chem., 2015, 290(3):1664-1678.
    41. Zhou XL, Ruan ZR, Wang M, Fang ZP, Wang Y, Chen Y, Liu RJ, Eriani G, Wang ED*, A minimalist mitochondrial threonyl-tRNA synthetase exhibits tRNA-isoacceptor specificity during proofreading. Nucleic Acids Res., 2014, 42(22):13873-13886.
    42. Fang ZP, Wang M, Ruan ZR, Tan M, Liu RJ, Zhou M, Zhou XL*, Wang ED*. Co-existence of bacterial leucyl-tRNA synthetases with archaeal tRNA binding domains that distinguish tRNALeu in the archaeal mode. Nucleic Acids Res., 2014, 42(8):5109-5124.
    43. Zhou XL and Wang ED*. Transfer RNA: a dancer between charging and mis-charging for protein biosynthesis. Sci. China Life Sci., 2013, 56(10):921-932. (Invited review)
    44. Zhou XL, Fang ZP, Ruan ZR, Wang M, Liu RJ, Tan M, Anella F, Wang ED*. Aminoacylation and translational quality control strategy employed by leucyl-tRNA synthetase from a human pathogen with genetic code ambiguity. Nucleic Acids Res., 2013, 41(21):9825-9838.
    45. Zhou XL, Ruan ZR, Huang Q, Tan M, Wang ED*. Translational fidelity maintenance preventing Ser mis-incorporation at Thr codon in protein from eukaryote. Nucleic Acids Res., 2013, 41(1):302-314.
    46. Zhou XL, Du DH, Tan M, Lei HY, Ruan LL, Eriani G, Wang ED*. Role of tRNA amino acid-accepting end in aminoacylation and its quality control. Nucleic Acids Res., 2011, 39(20):8857-8868.
    47. Zhou XL, Tan M, Wang M, Chen X, Wang ED*. Post-transfer editing by a eukaryotic leucyl-tRNA synthetase resistant to the broad-spectrum drug AN2690. Biochem J., 2010, 430(2):325-333.
    48. Zhou XL, Wang M, Tan M, Huang Q, Eriani G, Wang ED*. Functional characterization of leucine-specific domain 1 from eukaryal and archaeal leucyl-tRNA synthetases. Biochem J., 2010, 429(3):505-513.
    49. Zhou XL and Wang ED*. Two tyrosine residues outside the editing active site in Giardia lamblia leucyl-tRNA synthetase are essential for the post-transfer editing. Biochem. Biophys. Res. Commun., 2009, 386(3):510-515.
    50. Zhou XL, Yao P, Ruan LL, Zhu B, Luo J, Qu LH, Wang ED*. A unique peptide in the CP1 domain of Giardia lamblia leucyl-tRNA Synthetase. Biochemistry (US), 2009, 48(6):1340-1347.
    51. Zhou XL, Zhu B, Wang ED*. The CP2 domain of leucyl-tRNA synthetase is crucial for amino acid activation and post-transfer editing. J. Biol. Chem., 2008, 283(52):36608-36616.
    52. Zhou XL and Wang ED*, Mitochondrial aminoacyl-tRNA synthetases related to human diseases. Prog. Biochem. Biophys., 2008, 35(8):853-858. (Review)
    獲獎及榮譽:
    研究組成員:
无码人妻一区| 国产精品麻豆| 日本熟女网站| 国产精品一区二区三区不卡| 欧美一级在线观看| 秋霞在线视频| 久久久黄片| 成人精品视频| 久久久天堂| 91视频导航| 亚洲一区二区在线播放| 欧美日韩三级| 伊人999| 青青草视频下载| 91色综合| 国产精品九九| 国产乱子伦| 九九九精品视频| 色接久久| 免费操逼网站| 玖玖在线| 国产又黄又硬又粗| 亚洲高清在线| 久久人人操| 性生生活大片又黄又| 日本a视频| 欧美激情一区二区| 欧美天天干| 国产精品久久一区二区三区| 免费18禁| 奇米狠狠| 一级黄色片免费看| 麻豆极品JK丝袜自慰喷水久久| 小黄片在线免费观看| 国产精品自拍一区| 欧美日韩一区二区三区四区五区| 波多野结衣无码视频| 国产亚洲一区二区三区| 高清无码专区| 精品乱子伦| 天天射影院|